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Abstract

In this paper we investigate the impact of choosing different loss func-
tions from the viewpoint of statistical learning theory. We introduce a
convexity assumption - which is met by all loss functions commonly used
in the literature, and study how the bound on the estimation error changes
with the loss. We also derive a general result on the minimizer of the ex-
pected risk for a convex loss function in the case of classification. The main
outcome of our analysis is that, for classification, the hinge loss appears
to be the loss of choice. Other things being equal, the hinge loss leads to
a convergence rate practically indistinguishable from the logistic loss rate
and much better than the square loss rate. Furthermore, if the hypothesis
space is sufficiently rich, the bounds obtained for the hinge loss are not
loosened by the thresholding stage.

1 Introduction

A main problem of statistical learning theory is finding necessary and sufficient condi-

tions for the consistency of the Empirical Risk Minimization principle. Traditionally,

the role played by the loss is marginal and the choice of which loss to use for which
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problem is usually regarded as a computational issue (Vapnik, 1995; Vapnik, 1998;

Alon et al., 1993; Cristianini and Shawe Taylor, 2000). The technical results are usu-

ally derived in a form which makes it difficult to evaluate the role played, if any, by

different loss functions.

The aim of this paper is to study the impact of choosing a different loss function

from a purely theoretical viewpoint. By introducing a convexity assumption – which

is met by all loss functions commonly used in the literature, we show that different loss

functions lead to different theoretical behaviors. Our contribution is twofold. First, we

extend the framework introduced in Cucker and Smale (2002b), based on the square

loss for regression, to a variety of loss functions for both regression and classification

allowing for an effective comparison between the convergence rates achievable using

different loss functions. Second, in the classification case, we show that for all convex

loss functions the sign of the minimum of the expected risk coincides with the Bayes

optimal solution. This can be interpreted as a consistency property supporting the

meaningfulness of the convexity assumption at the basis of our study. This property

is related to the problem of the Bayes consistency (Lugosi and Vayatis, 2003; Zhang,

2003).

The main outcome of our analysis is that, for classification, the hinge loss appears

to be the loss of choice. Other things being equal, the hinge loss leads to a convergence

rate which is practically indistinguishable from the logistic loss rate and much better

than the square loss rate. Furthermore, the hinge loss is the only one for which, if the

hypothesis space is sufficiently rich, the thresholding stage has little impact on the

obtained bounds.

The plan of the paper is as follows. In Section 2 we fix the notation and discuss the

mathematical conditions we require on loss functions. In Section 3, we generalize the

result in Cucker and Smale (2002b) to convex loss functions. In Section 4 we discuss

the convergence rates in terms of various loss functions and focus our attention on

classification. In Section 5 we summarize the obtained results.

2 Preliminaries

In this section we fix the notation and then make explicit the mathematical properties

required in the definition of loss functions which can be profitably used in statistical

learning.
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2.1 Notation

We denote with p(x, y) the density describing the probability distribution of the pair

(x, y) with x ∈ X and y ∈ Y . The sets X and Y are compact subsets of IRd and IR

respectively. We let Z = X × Y and we recall that p(x, y) can be factorized in the

form p(x, y) = p(y|x) · p(x) where p(x) is the marginal distribution defined over X

and p(y|x) is the conditional distribution 1. We write the expected risk for a function

f as

I[f ] =

∫

Z

V (f(x), y)p(x, y)dxdy, (1)

for some nonnegative valued function V , named loss function, the properties of which

we discuss in the next subsection. The ideal estimator – or target function, denoted

with f0 : X → IR, is the minimizer of

min
f∈F

I[f ],

where F is the space of measurable functions for which I[f ] is well-defined. In practice

f0 cannot be found since the probability distribution p(x, y) is unknown. What is

known is a training setD of examplesD = {(x1, y1), . . . , (x`, y`)}, obtained by drawing

` i.i.d. pairs in Z according to p(x, y). A natural estimate of the expected risk is given

by the empirical risk

Iemp[f ] =
1

`

∑̀

i=1

V (f(xi), yi). (2)

The minimizer fD of

min
f∈H

Iemp[f ], (3)

can be seen as a coarse approximation of f0. In (3) the search is restricted to a

function space H, named hypothesis space, allowing for the effective computation of

the solution. A central problem of statistical learning theory is to find conditions

under which fD mimics the behavior of f0.

1The results obtained throughout the paper, however, hold for any probability
measure on Z.
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2.2 RKHS and Hypothesis Space

The approximation of f0 from a finite set of data is an ill-posed problem (Girosi

et al., 1995; Evgeniou et al., 2000). The treatment of the functional and numeri-

cal pathologies due to ill-posedness can be addressed by using regularization theory.

The conceptual approach of regularization is to look for approximate solutions by

setting appropriate smoothness constraints on the hypothesis space H. Within this

framework, Reproducing Kernel Hilbert Space (RKHS) (Aronszajn, 1950) provides a

natural choice for H (Wahba, 1990; Girosi et al., 1995; Evgeniou et al., 2000). In what

follows we briefly summarize the properties of RKHSs needed in the next section. A

RKHS is a Hilbert space H characterized by a symmetric positive definite function

K(x, s), named Mercer kernel (Aronszajn, 1950)

K : X ×X → IR,

such that K(·,x), for all x ∈ X, and the following reproducing property holds

f(x) = 〈f,K(·,x)〉H. (4)

For each given R > 0, we consider as hypothesis space HR, the ball of radius R in the

RKHS H, or

HR = {f ∈ H, ‖f‖H ≤ R}.

We assume that K is a continuous function on X ×X. It follows from Eq. (4) that

HR is a compact subset of C(X) in the sup norm topology

‖f‖∞ = sup |f(x)|.

In particular, this implies that given f ∈ HR we have

‖f‖∞ ≤ RCK with CK = sup
x∈X

√

K(x,x).

We conclude by observing that CK is finite since X is compact.
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2.3 Loss functions

In Eqs. (1) and (2) the loss function

V : IR × Y → [0,+∞)

represents the price we are willing to pay by predicting f(x) in place of y. The choice

of the loss function is typically regarded as an empirical problem, the solution to which

depends essentially upon computational issues.

We now introduce a mathematical requirement a function needs to satisfy in order

to be naturally thought of as a loss function.

We first notice that the loss function is always a true function of only one variable

t, with t = w − y for regression and t = wy for classification. The basic assumption

we make is that the mapping

t→ V (t)

is convex for all t ∈ IR. This convexity hypothesis has two technical implications

(Rockafellar, 1970).

1. A loss function is a Lipschitz function, i.e. for every M > 0 there exists a

constant LM > 0 such that

|V (w1, y) − V (w2, y)| ≤ LM |w1 − w2|

for all w1, w2 ∈ [−M,M ] and for all y ∈ Y .

2. There exists a constant C0 such that, ∀y ∈ Y ,

V (0, y) ≤ C0 .

The explicit values of LM and C0 depends on the specific form of the loss function.

In what follows we consider

• the square loss V (w, y) = (w − y)2,

• the absolute value loss V (w, y) = |w − y|, and

• the ε−insensitive loss V (w, y) = max{|w − y| − ε, 0} =: |w − y|ε
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Figure 1: Various loss functions used in classification. Here t = yf(x).

for regression, and

• the square loss V (w, y) = (w − y)2 = (1 − wy)2,

• the hinge loss V (w, y) = max{1 − wy, 0} =: |1 − wy|+, and

• the logistic loss V (w, y) = (ln 2)−1 ln(1 + e−wy)

for classification (see Figure 1). The constant in the logistic loss ensures that all

losses for classification equal 1 for w = 0. The values of LM and C0 for the various

loss functions are summarized in Table 1. We observe that for regression the value of

δ in C0 depends on the interval [a, b] in IR and is defined as δ = max{|a|, |b|}. For

classification, instead, C0 = 1 for all loss functions.

Notice that the 0 − 1 loss, the natural loss function for binary classification, does

not satisfy the convexity assumption. In practice, this does not constitute a limitation

since the 0 − 1 loss leads to intractable optimization problems.
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Table 1: Optimal values of LM and C0 for a number of loss functions for regression
(regr) and classification (class). In regression (Y = [a, b]) δ = max{|a|, |b|}.

problem loss LM C0

regr quad 2M + δ δ2

regr abs val 1 δ

regr ε-insensitive 1 δ

class quad 2M + 2 1

class hinge 1 1

class logistic (ln 2)−1eM/(1 + eM) 1

3 Estimation error bounds for convex loss func-

tions

It is well known that by introducing an hypothesis space HR, the generalization error

I[fD] − I[f0], can be written as

I[fD] − I[f0] = (I[fD] − I[fR]) + (I[fR] − I[f0]) (5)

with fR defined as the minimizer of minf∈HR
{I[f ]}.

The first term in the r.h.s of (5) is the sample or estimation error, whereas the

second term – which does not depend on the data – is the approximation error. In

this section we provide a bound on the estimation error for all loss functions through

a rather straightforward extension of Theorem C in (Cucker and Smale, 2002b). We

let N(ε) be the covering number of HR (which is well defined because HR is a compact

subset of C(X)) and start by proving the following sufficient condition for uniform

convergence from which the derivation of the probabilistic bound on the estimation

error will be trivially obtained.

Lemma: Let M = CKR and B = LMM + C0. For all ε > 0,

Prob{D ∈ Z`| sup
f∈HR

|I[f ] − Iemp[f ]| ≤ ε} ≥ 1 − 2N(
ε

4LM

)e−
`ε

2

8B2 . (6)
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Proof. Since HR is compact, both M and B are finite. We start by writing

LD[f ] = I[f ] − Iemp[f ].

Given f1, f2 ∈ HR, for the Lipschitz property we have that

|LD[f1] − LD[f2]| ≤ |I[f1] − I[f2]| + |Iemp[f1] − Iemp[f2]| ≤ 2LM‖f1 − f2‖∞ . (7)

The mean value µ of the random variable on Z defined as ξ(x, y) = V (f(x), y), is

µ :=

∫

Z

V (f(x), y) dp(x, y) = I[f ],

and, since 0 ≤ µ, ξ ≤ B, we have that |ξ(x, y) − µ| ≤ B, for all x ∈ X, y ∈ Y .

Given f ∈ H, we denote with

Af = {D ∈ Z` | |LD[f ]| ≥ ε}

the collection of training sets for which convergence in probability of Iemp[f ] to I[f ]

with high confidence is not attained. By Hoeffding inequality (Cucker and Smale,

2002b) we have that,

p`(Af ) ≤ 2e−
`ε

2

2B2 .

If m = N( ε
2LM

), by definition of covering number, there exist m functions f1, . . . , fm ∈

HR such that the m balls of radius ε
2LM

, B(fi,
ε

2LM

) cover HR, or HR ⊂ ∪m
i=1B(fi,

ε
2LM

).

Equivalently, for all f ∈ HR, there exists some i ∈ {1, ...,m} such that f ∈ B(fi,
ε

2LM

),

or

‖f − fi‖∞ ≤
ε

2LM

. (8)

If we now define A = ∪m
i=1Afi

, we then have

p`(A) ≤
m

∑

i=1

p`(Afi
) ≤ m2e−

`ε
2

2B2 .

Thus, for all D 6∈ A we have that |LD[fi]| ≤ ε and, by combining Eqs. (7) and (8), we

obtain

|LD[f ] − LD[fi]| ≤ ε.
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Therefore, for all f ∈ HR and D 6∈ A we have that

|LD[f ]| ≤ 2ε.

The thesis follows replacing ε with ε
2
. QED.

The above Lemma can be compared to the classic result in the book of Vapnik

(1998) (see Chapter 3 and 5 therein) where a different notion of covering number that

depends on the given sample is considered. The relation between these two complexity

measures of hypothesis space has been investigated by some authors (Zhou, 2002;

Pontil, 2003). In particular, from the results in Pontil (2003) the generalization of our

proof to the case of data dependent covering number does not seem straightforward.

We are now in a position to generalize Theorem C in Cucker and Smale (2002b)

and obtain the probabilistic bound by observing that for a fixed η the confidence term

in Eq. (6) can be solved for ε.

Theorem Given 0 < η < 1, ` ∈ IN and R > 0, with probability at least 1 − η,

I[fD] ≤ Iemp[fD] + ε(η, `, R) and

|I[fD] − I[fR]| ≤ 2ε(η, `, R)

with lim`→∞ ε(η, `, R) = 0.

Proof. The first inequality is evident from the above lemma and the definition of

ε. The second one follows observing that, with probability at least 1 − η,

I[fD] ≤ Iemp[fD] + ε(η, `, R) ≤ Iemp[fR] + ε(η, `, R) ≤ I[fR] + 2ε(η, `, R),

and, by definition of fR, I[fR] ≤ I[fD]. That lim`→∞ ε(η, `, R) = 0 follows elementarily

by inverting η = η(ε) with respect to ε.

4 Statistical properties of loss functions

We now move on to study some statistical properties of various loss functions.
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Figure 2: Semilogarithmic plots of the convergence rates of various loss functions
for regression (a) and classification (b). In both cases, R = 1.5, ε = 0.2 and the
dimensionality of the input-space used to estimate the covering number is 10. For
regression we set δ = 1.5.

4.1 Comparing convergence rates

Using Eq. (6) we first compare the convergence rates of the various loss functions.

This is made possible since the constants appearing in the bounds depend explicitly

on the choice of the loss function. For the sake of simplicity we assume CK = 1

throughout.

For regression we have that the absolute value and the ε-insensitive loss functions

have the same confidence, i.e.,

2N
( ε

4

)

exp

(

−
`ε2

8(R + δ)2

)

(9)

from which we see that the radius, ε/4, does not decrease when R increases, unlike

the case of the square loss in which the confidence is

2N

(

ε

4(2R + δ)

)

exp

(

−
`ε2

8(R(2R + δ) + δ2)2

)

. (10)

Notice that for the square loss the convergence rate is also much slower given the

different leading power of the R and δ factors in the denominator of the exponential

arguments of (9) and (10). In Figure (2a) we compare the dependence of the estimated

confidence η on the sample size ` for the square and the ε-insensitive loss for some fixed
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values of the various parameters (see the legend for details). The covering number has

been estimated from the upper bounds found in Zhou (2002) for the Gaussian kernel.

Clearly, to a steeper slope corresponds a better convergence rate.

Qualitatively, the behavior of the square loss does not change moving from regres-

sion to classification. For the hinge loss, instead, the confidence reads

2N
( ε

4

)

exp

(

−
`ε2

8(R + 1)2

)

.

Here again, the covering number does not depend on R and the convergence rate is

much better than for the square loss. The overall behavior of the logistic loss

2N

(

ε

4(ln 2)−1eR/(1 + eR)

)

exp

(

−
`ε2

8(R((ln 2)−1eR/(eR + 1)) + 1)2

)

is very similar to the hinge case. This agrees with the intuition that these two losses

have similar shape (see Figure 1). The behavior of the convergence rates for these

three loss functions is depicted in Figure (2b) (again the covering number has been

estimated using the upper bounds found in Zhou (2002) for the case of Gaussian

kernel and to a steeper slope corresponds a better convergence rate). We conclude

this section pointing out that this analysis is made possible by the fact that, unlike

previous work, mathematical properties of the loss function have been incorporated

directly into the bounds.

4.2 Bounds for classification

We now focus our attention to the case of classification. We start by showing that

the convexity assumption ensures that the thresholded minimizer of the expected risk

equals the Bayes optimal solution independently of the loss function. We then find

that the hinge loss is the one for which the obtained bounds are tighter.

The natural restriction to indicator functions for classifications corresponds to

considering the 0 − 1 loss. Due to the intractability of the optimization problems

posed by this loss, real valued loss functions must then be used (effectively solving a

regression problem) and classification is obtained by thresholding the output.

We recall that in this case the best solution fb for a binary classification problem
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is provided by the Bayes rule defined, for p(1|x) 6= p(−1|x), as

fb(x) =

{

1 if p(1|x) > p(−1|x)

−1 if p(1|x) < p(−1|x).

We now prove the following fact relating the Bayes optimal solution to the real valued

minimizer of the expected risk for a convex loss.

Fact: Assume that the loss function V (w, y) = V (wy) is convex and that it is

decreasing in a neighborhood of 0. If f0(x) 6= 0, then

fb(x) = sgn(f0(x)).

Proof. We recall that, since V is convex, V admits left and right derivative in 0 and,

since it is decreasing, V ′
−(0) ≤ V ′

+(0) < 0. Observe that

I[f ] =

∫

X

(p(1|x)V (f(x) + (1 − p(1|x))V (−f(x))) p(x)dx,

with p(1|x) = p(y = 1|x), we have f0(x) = argminw∈IR ψ(w), where

ψ(w) = p(1|x)V (w) + (1 − p(1|x))V (−w)

(we assume existence and uniqueness to avoid pathological cases).

Assume, for example, that p(1|x) > 1
2
. Then,

ψ′

−(0) = p(1|x)V ′

−(0) − (1 − p(1|x))V ′

+(0)

≤ p(1|x)V ′

+(0) − (1 − p(1|x))V ′

+(0)

= (2p(1|x) − 1)V ′

+(0) ≤ 0,

Since ψ is also a convex function in w, this implies that for all w ≤ 0

ψ(w) ≥ ψ(0) + ψ′

−(0)w ≥ ψ(0),

so that the minimum point w∗ of ψ(w) is such that w∗ ≥ 0. Since f0(x) = w∗, it

follows that if f0(x) 6= 0

sgn f0(x) = sgn(2p(1|x) − 1) = fb(x).
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This ends the proof.

Remark: The technical condition f0(x) 6= 0 is always met by all loss functions

considered in this paper and in practical applications and is equivalent to require the

differentiability of V in the origin2.

The above fact ensures that in the presence of infinite data all loss functions used

in practice, though only rough approximations of the 0 − 1 loss, lead to consistent

results. Therefore, our result can be interpreted as a consistency property shared by

all convex loss functions.

It can be shown that for the hinge loss (Lin et al., 2003)

I[f0] = I[fb]. (11)

By directly computing f0 for different loss functions (see Hastie et al. (2001), pp.

381, for example) it is easy to prove that this result does not hold for the other loss

functions used in this paper.

We now use this result to show that the hinge loss has a further advantage on the

other loss functions. In the case of finite data, we are interested in bounding

I[sgn(fD)] − I[fb], (12)

but we can only produce bounds of the type

I[fD] − I[fR] ≤ 2ε(η, `, R).

We observe that for all loss functions

I[sgn(fD)] ≤ I[fD] (13)

see Figure (1). Now, if the hypothesis space is rich enough to contain f0, i.e. when

the approximation error can be neglected, we have fR = f0.

For the hinge loss, using Eqs. (11) and (13) and the theorem, we obtain that for

2Consider the case p(1|x) > 1
2
. Computing the right derivative of ψ in 0, ψ′

+(0),

and observing that ψ′
+(0) ≥ 0 for p(1|x) ∈ (1

2
,

V ′

−
(0)

V ′

−
(0)+V ′

+
(0)

), it follows that this interval

is empty if and only if V ′
−(0) = V ′

+(0). For more details see Rosasco et al. (2003).
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0 < η < 1 and R > 0 with probability at least 1 − η

0 ≤ I[sgn(fD)] − I[fb] ≤ I[fD] − I[f0] ≤ 2ε(η, `, R).

We stress that the simple derivation of the above bound follows naturally from

the special property of the hinge loss expressed in Eq. (11). For other loss functions

similar results can be derived through a more complex analysis (Lugosi and Vayatis,

2003; Zhang, 2003).

5 Conclusion

In this paper we consider a probabilistic bound on the estimation error based on

covering numbers and depending explicitly on the form of the loss function for both

regression and classification problems. Our analysis makes explicit an implicit convex-

ity assumption met by all loss functions used in the literature. Unlike previous results,

constants related to the behavior of different loss functions are directly incorporated

in the bound. This allows us to analyze the role played by the choice of the loss func-

tion in statistical learning: we conclude that the built-in statistical robustness of loss

functions like the hinge or the logistic loss for classification and the ε-insensitive loss

for regression leads to better convergence rates than the classic square loss. It remains

to be seen whether the same conclusions on the convergence rates can be drawn using

different bounds.

Furthermore, for classification, we derived in a simple way results relating the

classification problem to the regression problem that is actually solved in the case of

real valued loss functions. In particular we pointed out that only for the hinge loss

the solution of the regression problem with infinite data returns the Bayes rule. Using

this fact the bound on the generalization error for the hinge can be written ignoring

the thresholding stage.

Finally, we observe that our results are found considering the regularization setting

of the Ivanov type - that is, empirical risk minimization in balls of radius R in the

RKHS H. Many kernel methods consider a functional of the form

Iemp[f ] + λ‖f‖2
H

that can be seen as the Tikhonov version of the above regularization problem. The
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question arises of whether, or not, the results presented in this paper can be generalized

to the Tikhonov setting. For the square loss a positive answer is given in Cucker and

Smale (2002a), where the proofs heavily rely on the special properties of the square

loss. Current work focuses on extending this result to the wider class of loss functions

considered in this paper.
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